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NACA TN No. 932
THE NUMERICAL SOLUTION OF COMPRESSIBLE FLUID FLOW PRCBLEMS
By Howard W. Zmmons
Hay 1944

P +
Page 12, line 16: Change _stagnation .

Po

Pstagnation
P o}

to rqad

Page 16, paragraph 4, line 9: Change . . . upper lelt of
each net point . . ." to read ". . . upper right of ez2ch
ret point . . "

Page 20, equation 25, first part of second line: Change

-We'(in p/po) to read ~¢€'(1n p/°o>E

Fage 25, line 14: The sentence "The balanced case is impor-
tant since it insures zero rotation for the adiabatic flow
of a gas from a large regicn of zero velocity even though
the temperature is not unifora there," is8 incorrect. 1%
can be shown that

Pas 3in To
2 A

for flow from a reservoir of nonuniform temperatura

2w =

‘ 47 - 4o
Crange Cy —=— — & —— to resd
- D

q critical velocity

[ s
critical velocity = ¢ "= a?

|
Y+l

Prnge 26, equation (4%): Change AXY . . . . for aay funz—

n
tisn < (X,Y), tc read Oxy . . . for any function @ x,y.

Page 2¢, sentence following cquation (54): Change '"equation
(48) follows." to read "equation (49) follows."

RESTRICTED







GTATIOWAL ADVISQRY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO, 932

THE WUNZRICAL SOLUTION OF COMPRESSIBLE FLUID FLOW PROBLEHS

By Howard W, Emmmns
SUMMARY

¥umerical methods have been developed for obtaining
the steady, adlabatic flow field ef a frictionless, per—
feet gas about ardbitrary two—dimensional bodies, The
solutinns izclude the subscnic velocity regions, the super—
sonic velocity regions, and the transitien compression
shocks, if required, Furthermors, the rotational motion
and antropy changes following shocks arse taken into ac~
count., ZIxtensive use ig made of the relaxation method,

In s report the details of the metheds of solution
zed s0 as to permit athers to solve similar

are emnhasi
prodblems., Sclutions already obtained are mentioned only
by way of illustrating the possibilities of the methods
descridbed.

“he nethods ¢an be applied directly to wind tunnel
and free 2ir tests of arditrary airfoil shapes at sudb—
sonic, sonic, and supersonic speeds.

INTRODUCTION

The lnowledge of the flow of incompressible fluids
about bodies, especially airfoil shapes, has been greatly
advancel 9y tiie interpretation of good experimental re—
sults in the light of theoretical predictions, The first
successful, ensiest, and most widely useful theorstical
results nave come from a consideration of the two—dimen—
sional irrotational flow of an incompressidle perfect fluid,

The inowledge of the flew of compressible fluids
has made good progress in exactly the same way for two
widely scparated conditions., First, linearization and




ACA TY No, 932 2

perturdation methods yield helpful information up te
moderate velocities, a llach number from C.5 to 0.7 de—
pending wron the body. Second, the method of character—
igtics itharcws a great deal of light on completely
supersonic flows. Analytical difficulties have to date
prevanted the extension of theoretical rosults to many
flew problexms in which both subsonic and supersonic
velocity rogions occur. A. Chaplygin, Ringled, and
Tollmicn (references 1, 2, and 3) have obtained a Tew
suggestive exact solutions involving subsonie and super—
sonic velocity regions. iieyer, Taylor, and Gdrtler (ref—
erenccs 4, 5, and 6) have studied in a crude apprcximate
way tho nassage through sonic velocity in a nozzle. None
of these nctiods of solution 1is adble to fit arbitrary
body shapcs and is completely incapable of predicting

the ocecurrence, location, and zhape of compression shocks.

When shocks are present in a solution, the asump—
tion of irrctationality of the flow of a compressibdle
fluid ic, in general, no lenger correct. Special forms
of the ecouation descriding the rotational motion of a
gas have Vbcen discussed by Friedrichs and Crocco (ref—
erences 7 and 8), A consideration of the complexity of
these couations together with the almest insurmountabls
analyticel Cifficulties encountered .in attempting solu—
tions of adiadbatic, frictionless, irrotational, shoeck—
free flow mnazes 1t obvious that analytical solutions of
general hipgh velocity problems are not likely t» be found
in tho necar future,

A necv, rather general idea was intreduced into the
numerical solution of difficult problems during the
ninetecern thirties. R, V, Southwell's relaxation method
(refercnces 9, 10, 11) permits the solution of probdlems
of thec Tlow of incompressidla, perfect fluids with great
easec, and is readily adapted to the solution of subdbsonic
problems of adabatic, frictionless (not necessarily
irrotational) flov., The relaxation method is not direct—
ly applicadbic to supersonic velocity regions, but an al-
ternative procedure based upon the use of the finite
difference cquations has bYeen worked out. ZFinally, the
fitting together of the subsonic and supersonic reglons,
adjusting their shape and size with compression shocks,
if necessary, is accomplished by a combination of methods,

This invostigation, conducted at tho Harvard University
was sponsorcd by, and conducted with financlal assistance
from, tio National Advisory Committee for Aeronautics.

H




SYMBOLS

acoustic veloclity

ppecific heat at constant pressuro and
volume, respectively

Cy
constant

reforence dimension sctting physical scale of alr-
foil or tunnel

speclfic enthalpy
distance along streamline

% Mach aumber

normal distance

pressure

velocity (components u, v)

residual to be liquidatad

gas constant

radius of curvature of streanline
specific entropy

absolute temperature

velocity component in X direction
velocity of undisturbded strean
volocity component in ¥y direction

coordinates in physical plane

{sentropic expenont
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lattice svacing in eomputations

change of a quantity or the laplace operator

Scalar variabvle

strecan function

constant

dimensionless stream function

stream function for {ncompressible fluid

velocity potential for incoempressidle fluid
p nass densgity

4y roto of rotation

Subscripts
i incompressible fluid

x,v, 0,1, denate differentliation in the corresponding
direction

= X denote differentiation with respect t»
D dinensionless coordinate in the
pkysical plane

1,2,3,4,0 lattice noints

" isentropiec stagnation c¢onditionsg for undisturded
strean -

REILAXATION SOLUTION.OF THE FLOW OF INCOMPRESSIBLE FLUIDS

The two=dimensional irrotational flow of an incem-
pressible fluid is described by ocither of the cquations

AN = 0 (1 is the stream function) a)
(1)
Ot = O (¢t 18 the velocity pctential) v)
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wherc tho velocity componcents are given by

E(_E\‘ = n I;/x‘\ B.)
\2 B4

= -1 /x\ b)
\3/

1/a

=(ug® + v32)

c)

To find the Tlow about a given airfoil, it is necessary
to fird a solution to one of the equations (1) subject to
the boundary conditions that the surface of the airfoil
is a strecamline and conditions at infinity arc uniform,.
Thus in figureo 1, the boundary conditions would be:
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Por the stream function

T =aconstant on the airfoil

N=-N,at ys=-¢
' (3a)

]

n nbﬂ.ty=b

%g for x —>* @

n

For the veloclty potential

3
¢ = 0 along airfoil

d

=~ = 0 at ¥y = -c, D (31)
a 1]
Cﬁ/

£ —> %ﬁ for x —> % @

The Joukowski condition of no flow around the trailing
edge must be added.

To solve equations (1) subject to conditions (3)
for an arbitrary airfoil shape, the relaxation method
ig by far the most practical. Christopherson and
Southwell in reference 10 discuss the method in a general
way; Emmons in reference 11 gives a more detailed appli-
caticn to the solution of the Laplace equation. The
nmethod is outlined below.

The desired equation, say (1a); i{s written in the
approximate finite difference form (see reference 10 or
11):

My + g + My + Mg - 4Ny = O (4)

where T, 1is the value of TN at an ardbitrary point in
a square net of points (see fig. 1) ‘and Ty, Tz, Ms,
N4 are the values of 1N at the four surrounding points.
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If by some process, values of T were attached to each
point, equation (4) would immediately show whether or
not they approximated a solution of Laplace's equation.
If the attached values 4o not satisfy (4), they define
a residual Q at each point.

T + T + Ty + Ty - 4Ti5= Qp (s)

Observe that a change of value of Ty by 1, all other

TN's held constant, would change tke value of the 12's

at various points as shown in figure 2. Thus the residuals
mar be moved at will from any givern point to the surrcund-
ing points. This process is physically equivalent to ro-
noving restraints from a tension net; zonce the tern
"rolaxaticn method." Figure 2 ie called by Seuthwell the
relaxation pattern. It gives at a glance the influence
cocfficients for the effect of changes of T on the
residuals. This relaxation process is followed step by step
until all interior Q are zero and the boundary values
arc as desired.
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To calculate the flow about an airfoil, take the
following steps:

1, Draw the airfoil and flow region to a scale
such that the distance between net points, as § 1in
figure 1, is atout 1% tnches. Do not use to0 many
pointa at the start. Tnose snown in figure 1 are ade—
quate, For greater accuracy more points can be added
in important regions, as near the airfoil, during the
course of solution,

2., With the boundary conditions in miand, guess
values of n at tne net points, and compute the residuals,
To ald the accuracy of guessing, a freehand sketch of
streamlines and potential lines is sometimes useful,
Use whole values of 1% ranging from say 0O to 1000. I%
is convenient to record at each net point values as in-
dicated in figure 3.

QOQ n guess
Q1 any

Rz ang

etc., etc.

innal nfina.l

FPigure 3

3. The regiduals are relaxed, each time recording at
each point the change in n and the resultant Q. In
this way the pointe at wnich the residual is largest can
be spotted at a glance and relaxed next. Change n Dby
sinmple whole numbers only.

4. After all Q have values between 2 (move
decimal to position of desired accuracy) add changes of
n to get the final value (fig. 3) at each point.

5, Recompute Q by equation (5) to locate any com—
putation errors. Relax resultant Q 1if any.
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6. I7 the solution is not accurate enough, additional
points are added whereo needed. In figure 1 many nore
roints are neceded near the airfoil., The process 1
through 3 is repeated as previously mentioned.

7, The required results - for example, pressure
digtribution — can be computed by use of equations (2)
ard Bernoullils equation. The accuraoy of all the re—
sults can be at any time improved by adding more points
to the net used in the soludions,

The bouvndary values as given will be information
about valvcs of the desired function or values of the
normal. derivative of the desired function as in equa—
tion (3). When the physical boundary runs between ret
points, it is sufficiently accurate to set vaelues at the

nearcst nct points by linecar interpolation or extrapola—
tion.

As will be deserided in a following section, the
fiow of a conmpressible fluid 1is best accomplished by
making usc of the streamlines and potential lines of the

irrotational flow of an incompressible fluid about the
same body,

Differential Equatlons and Boundary Conditions
for the Adiabatic Flow of a Frictionless Perfect Gas

The motion Af a compressible fluld is describded by
three lawvs of nature: namely, conservation of matter,
energy, oad momentum together with the properties of
the fluid and the boundary conditions of the particular
preblen on ltand., The second law of thermodynamics makes

a restriction on the type of discontinuity (shock wave)
that can occur,

In the following, the fluid will be taken as a
frictionless, perfect gas, The flow will be assumed
adiabatic. Thus In the absence of compression shocks
the flow will be isentropic. The changes of entropy in
the conpresgsion shocks will be considered in detail later,

If, in addition to the 'assumption of an adiadbatic

flow, steady flow is assumed, the energy equation states
that

(s)
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15 constant along a streamline but may differ in an artvi-
trary way from one streamline to the next. For all cares
assuming uniform conditions at infinity, the stagnation

enthalpy, h,, 1is constant everywhere. This assuzmption

1s usually adequate bdut, if not, it would not materially
conplicate the method of solution.

The ¢ontinuity squation in rectangunlar, x, y coordl-
nates is

spu L, 8pYv 0 (7)
ax 3y

This equation permits the introduction of the strean
function WV defined by

P\1=—a'\:u"‘§‘i’yo pv:-.@l—i_\]} (8)

3y 3x x

The substance of the equations of motion far an adiabatic
frictionless flow are summed up 1n the equatlons {see
avpondix 1 for dertivation)

1 (.av_
ax

where the entropy s and the stagration enthalpy hy
aro constant along a streamline. OGenerally, s and
he arec toth constant everywhere from which the flsw is

geen %o be irrotational.

Zquations (8) substituted into equation (9) yields
the fundanmental differential equation to be solved.

d /1. a\u A .
=\ 5 §_<.._ ay/“’z“’ (10s)

The following fornm of equation (10) is generally more
convenient for numerical solution, '

Vyx YWy =¥ Gnpdy =V (lnply + 20p =0 (100)
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If “he deneity ls constant and the retation ls zero,
this equation roduces to Laplace's cquation as used in
the previous scction. The values of *he deneity ratlo,
p/p_, %o be used in oguatien (10) are obtained freon

(sew appendix 2 far dorivation)

1
¢ 5 N VST -
! -1 q - 5= 3
p/p =<1l - i > ) 2—f (11)
© . 2 An,/ J R
and
. 172 . 1/2
r 2 3 f 2 2,
pa= <(pu) + (pv) > = Q'x + 7 (12)
b s ~ o
Thus tue density is given during the couree of enlutinn
by o4 ralmiion

/ o
iz plp, = £ 2B 200 (13)
\aopo R 7/

Thig relntion ig tlotted as comoutation figure 12.

I+ should te noted that the entrooy increase is
glanly related to the change in total pressure in the
phsencc ¢f noat transfer and friction. The relatien

G-

Petnpnatiazn + = ;

=22z @ 2 nas been plotted as computnation

£

figure 25. This relation is only corract when the -
st1annticn enthalrty 18 constant everywhere. The ;5—2
term ie used dircctly in this report in solte of the
expurinzental significance of the stagnatlon pressure
ratle toeause of 1%ts easc of uso and i{its =zore fundamscatal
rature i. couation (9).

Jurinz the course of a golution the values of WV,
and V. are periodically introduced into eauation (12);

In ¢ /pa is thon evalunted from coaputation figure 12

nnd is usod to cqrrect tho donsity terms in equation (10} .

£
¥
g
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The bYoundary conditions, as for incompressidle fluids,
are coamonly taken as uniform properties and velocity at
infini%y and a certain few streamlines specified by the

surfaces of bodles (alrfoil) and flow passages (wind
tunnel).

It was noted in the previous sectioan that the solu-
tlon of the flow of an incompressidle fluid adbout an
airfoll by the relaxation method required special atten-
tion to the bdoundary conditions when the net points did
not fall directly on the becundary itself., The flow of a
compressible fluid, especially near the speed ol sound,
involves so many difficulties that it is desirabdle to
avolid the boundary condition trouble, This is esasily
done by using as a coordinate system the streamlines
(N = const) and potential lines (¢ = const) for the ir-
rotational flow of a perfect incompressidle fluld about
the sane airfoll. TFigure 4 shows the airfeil in the real
plane and the simple straight line boundaries required
{n the transformed plane. A4nother advantage o6f these
coordinates can te anticipated since the compressible
fluid streamlines wlll not deviate too greatly from the
incompressible streamlines (T const).

This transformation of coordinates is conformal and
for any conformal transformation equations (10 a,b)
bvecome (soe apnendix 3)

2/ ;. 3?_( .. 220 (14a)
At \p p on q4°

or

2
Veg+Vpn -V (tnply ~Vp (laply + 2.%..?.&:0 (14v)

The dirferontial equation for V¥ has the same formal
appearance in the physical plane and in the transforned
‘plane (since for nearly all work the w term is negli-
ziblo). 4An important difference appears in the deterni-
nation of the compressible fluid density durin% the
course of the solution. In place of equation (12 th
following equation is used (ses avoendix 3):

pq = “'(JE +‘Un y, _ (15)

H
3
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The density 1s again calculated by equatien (13), compu-
tation figure 12,

' To determine, by equation (15), the value of the
fluid density at any point requires at that point a
knowvledge of the V gradient, For a solution of the
problem by a net of peintg there is some error involved
in evaluating the gradient. The simplest reasonadly ace
curate proacedure 1s to calculate, for example, WT] at
a given point as the difference between the values of
V at the preceding and following points divided by the
corresponding c¢hange of N = 2§, This method worke well
at all points away from the boundary, FTor doundary
points there 18 no "next" point from vhieh to get a slope.
0f course, any method of determining an approximate value
of lnp would be satisfactory se long as the value
would approach the correct value aps the net interval
§ > 0, Howaver, it is very desiradble to choose a
method of finding 1lnp at the beundary as accurately as
psssidle so that a relatively coarse net (large 8§) will
give as accurate a result as possidle. The following
pracedure gives very good results,

Ovserve, first, that at the boundary compressidle
(V) and incompressidle (7)) streamlines coincide and hence
the radius of curvature of these streamlines is the
sams, The kinematic relation for the rotation of fluid
elements (equation (29), appendix 1) gives

3}
.L:-M-.aﬂu-_:.w (15)

r dn q dn

Since w 18 generally negligible, this equation shows
that aleong the normal to the boundary; that ls, alang
constant { lines, the ratio of compressible to incom-
prossiblo fluid velocity (q/qy) is constant. This re-

lation i8 very good from boundary points to those next
along the ! constant lines., In this way accurate
valuees of q at the boundary are computed and thus inp
by computation figure 13.

Relaxation Solution of Subsonic Flew Problems

In the relaxatien solution of a non-linear equation
such as equation (14b), there are several possible




NACA TN No. 932

procedures, the relative excellence of which depends
upon the relative magnitude of the various terms, The
following method has been found very satisfactory.

The equation (14b) for the stream functien V i
put into a dimensionless form which permits ready change
of scales. Let

Vo= p,a, DV, V" (17)

where V, is a dimensionless constant to be chosen by

the computer, By equations (14 a,b)

B<E__o_ 3v', 2 (po ). _ _2 Do )
EIAY) bt) am\p on/ ay q3° Vo, :
or

Ve + Vg = V'§ (1n p/po)y—¥'n (10 p/pg)y

+ 2Dwo

ro a3 pg Vo

Equation (15) 18 alsa altered to
] +\”n.a)1/a (19)

The equation (18b) for the stream function V' 1is put
into finite 4difference form as follows:

Yot ae Vs b g mat s - W'y - v 3) (T 6ffg, —~1n P/Poy)
4

(Wa= Vig) (In plpoa=luplpg,) DWps

= = Qo (20)
4 8594 Py

and equation (19) becomes
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1/2

P —
;‘;-_j;;=qi{(\i’ 1--«*:) (‘lf4-‘# a/ (21)

where WV, has been chosen equal to 28 for convenience.

The best procedure found to date fer the solution of
equation (20) when the velacities are subsonic is to
troat the last three terms as corrections, The solutien
preceeds from assumed values of Y' to the reamoval of
the Q Dby the relaxation pattern based upon the first
five terms; that is, the same relaxation pattern as for
incempressible fluids (fig. 2). The Q are, however,
ecomputed correctly by equation (20), Pariodlcally during
the solution the Q are recomputed by equation (20} to
take account of the changing values of log p/p, and

w terms.

In the follewing 1list, the various staeps are illus-
trated bty the solution of the flow of a compressibleg fluid
through a hyperbelic channel (fig. 5).

1, Calculate the flow of an incompressibdble fluild
through the same flaw system using, if necessary, the re-
laxation method as described in the section, Relaxation
Solution of Incoempressible Fluid Flows. Of course, if
an analytical selution is known, this can be used. In
figure 5 1s shown the streamlines and veloclty petential
lines of the flow of an incempressidle fluid through a
hyyerbelic channel,

2, Draw the flow region on £, N coordinates to a
sufficiently large secale t» make room for the following
stops of commutation to be recorded at each net point.
Figure 6 shows (1/4 of) ®he hyperbolic channel drawn in
the 2, & plane. Of course, any shape channel would
fall in the same region of the {, T plane. The inm-
vortant numbers obtalned in step 1 are the dimensglonless
inconpressidle fluld velocities, qy4. These are plotted

in figure & and are recorded at the upper left of each
net point (fig. 6), The q; are dimensionless sinee the

volscity at the center of the passage § = 0, T = 0 was

taken as 1. If an airfeil with 1ift i1s to be treated,

the £, N plane would appear as in figure 4 with an upper

?nd lower half discontinuous acress the half-line T = O,
.0,
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3, Choose the desired bvoundary conditions for she
problem. Tihis is not as easy a matter as for inconm-
pregsidle fluids where necessary and sufficlent condi-
tions for the exiatence of a solution of Laplacels
equation are known., For the hyperbeclic channel, it was
decided to snecify: symmetry about the x and y axis,
uniforn mromerties and zero velocity for x —> xx, ir-
rotational motion throughout, M at the center of the
passage x = y = 0, For physical reasons, the seclutlion
of this 2redlem ias known to be unigque, Notice that it
is possible to spscify, for exampls, the total flow
through the nassage in place of some of the aforementioned
but thot then the solution would not be unique,

4, With the bdoundary ceconditions in mind, guess values

of the strean function V!, In the particular case of
the hyverbolic channel shown in figure 8, M was chosen

Pq
Po2o
= 0,568 vy computation figure 14, VWith 8 chosen as

as 0.35 at the center, 4t this point, therefore,

0,15, ¥, =25 = 0,30, BHence VI!(¢{ =0, n = 0.15)-V1(0.0)

[o1i] § _ 0,568

= = 0,284, To avoid continual
Po®o qiwo 2

=\L‘n‘5 =

use 0f snall decimals, 1000 times this numder ig recorded

in figure 68, The remaining V! values along ¢ = 0 were

set by vaoing V' approximately proportional to V' for

a sclution clready obtained for M conter = 0,80, A goed

alternctive »nrocedure would have been to assign Q/qi

constant along ¢ =0 (see equation (16)). EHaving an

approxinate V! on the boundary n = 0.6, it is constant

for all t. Por t 1large, V! 15 divided proportional
to n. Finally, all reamaining values of W! are put in
by guess. ’

5, Coxnute the auxiliary quantities and the residuals by

equation (20), The various values are arranged around the

point, as in figure 7, Note that the Vy'(iIn p/p,) term
has tcen omitted, This 1s possible only dbecause it is
of insignificant magnitude in the present casoe,
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Meg a4

{u‘r'} {-—111 -;-0-} {A'J;' + Wy an Bp_o) n =3 }

o ) )

Figure 7

6., Relax by figure 2 to eliminate the residuals, Q.
Periodically tne error must be recomputed to take cor-—
rectly into account the change of the Vn'(ln p/p,)

term not included in the relaxation pattern. #hen near

Pq
the vertical tangent to the In p/po - curve

PolBy

(i.e. near M it is sometimes more convenient to
change the o instead of ',

7. Add more points where greater accuracy is required
and recompute as above,

8. Tne required results are computed from the V!
gradient values, equation (21), and the various computa—
tion curves. In regions near M = 1, tne desired
regsults may be more accurately determined from thes values
of in p/po. In the case of the hyperbolic channel,

figure 8 showa the distridbution of velocity. In the

case of an airfoil, the most important results would bde
pressure distribution and 1ift. Computation figures 20

and 21 will supply the pressures, The lift can then de
obtained by integration. Finally the 1ift, or pressure
coefficient, can be found by using the value of 1/2 p qa
from computation figure 22, The undisturbed stream dynamic
head is generanlly used and therefore the affect of en—
tropy un the 1/2 p q° against M relation has not been
included in computation figure 22,
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Treatment of Supersenic Flows, Bspecially Supersonic
. Regions in an Otherwlse Sudsonic Tlow

Ag the speed of sound is approached by the fluid,

. the density-mass velocity relation approaches a vertical
tangent as in computation figure l2. In this region the
relaxation process is still abdle to yield a solution dut
the effect of changes in V' (or In p/po) gust bYe watched

very closely so as to avolid making residuals worse rather
than better.

The relaxation process, the removal of resgiduals by
arbitrary changes of the dependent variable, bocomes
confusing for supersonic velocities. The following
tentative method of solution has deen found adequate for
the problems solved to date.

The relation useful near the poundaries, equation
(16), is approximately correct throughout the flow field
and suggests working with q/qi as variadble in place of
of inp. Ag stown in appendix 4, equation (10) vecomes

/2

FooaN Lyl /T ‘Uga] \
. Veg +V g \ln.az . Vn \ln Ll + G;E )
-V (inply +%1°5Ep= 0 (22)
1

Tnis equaticen would be no improvement ovor equation (10},
except that the last three torms are generally very
snall., The first two ternms then give

[Vt
Q4 Loa(t) od ¥y o7 (23)
a4 .

If dimensionless variadles are again introduced through

: Vep, a, DYo¥! and g* = — (24)
; o 8,494

there results
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WEE' +\UT1' (Ln q*)-” -1/2 \yn‘ {ln Ll

_\Ug'(ln plpy) + %D wp

AV Po 24
and apprroxinately

- zz T
q* = C(t)e ol (26)

A solution obtained with gq* constant, i1f such that the
l1ast three terms of equation (25) are really negligidle,
tan be checked most easily by noting the value of
(W'Y which is the residual i the cquation (sec ap-

pendix 4)
(Vﬂ‘)ig + wﬂl (in q‘)nn + (Wn')ﬂ (in q*)n = 0 (27)

A solution is obtained in the followlng steps.

1. Lay ocut the problen as for a subsonlec velocity
sclutiorn fellowing steps 1, 2, and 3.

2. On each ¢ «constant line choose a value of
q* = constant. By means of conoutation figure 14 deternine
the value of Vpn at ecach net point (Vg2 1f not negli-
gible can be estimated later and corrected for). Inte-
gratec Vg to find V and to check the boundary condition
(vhen a streamline is given as at the surface of an air-
foil or passage). If V¥ does not satisfy the bdoundary
condition, a new value of q® is chosen and the compu~
tation repeated until it doecs.

3. The solution to this point has been obtained as
a onc-dimenasional solution along velccity potential
lines, each line being solved independent of the others,
The residuals (of the Q/n ) can now be avaluated from equa-

tion (27) dy computing (Vn'lyy since the other two terms

arc¢c zero.
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., lizitc adjustments to eliminate residuals. Nodefinite
structions are given at this point becausec, to date,
siduals have been so very small that almost no adjust—
~s Dbecn required, Figure 9 shows the subsonic—
sonic transition in a hyperbollic nozzlc obtained as
ned previously. This corresponds to the solution
obtained by a gseries expansion by ileyer {see refor—

4) .

cr
11
s
< v
o]

b
58
i
-
pey
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Solutions with Compression Shocks

Since many practical gas dynamics prodvlems start wvith
grs of uniform properties and vclocity, it is gencrally
not iccessary to consider variations in entropy. Thus
all tiic computation curves with varying cntropy are no?
nceded, As soon as supersonic reglons appear, discon—
tinvitics nmay occur in which the velocity drops and the
prescsurc rises over an extremcly short distance, Com—
prcssion shock, as these phenomena are called, is well
krnouwa in the literaturc {sec, for cxample, reference 12).
Commvcession shocks give risc to several effccts not
generally included in fluid mechanics solutions, In the
first »lace, a compression shock involves the dissipation
of nechnnical enorgy rcsulting in an increase of entrouy
(scc cexn . utation fig. 15). The entropy risc increcascs
with nn incrcase of the supersonic velocity of the fluid
ahoad of the shock measurcd relative to the shock., IT
the shoclt is oblique to the approaching stroam, the
nornal comnponent of velocity suffers a sudden change and
hernce the stream turns abruptly through somc angle (sec
computation fig., 16). The cntropy change through a
stationary shock is thus dependent upon tho initial
strean ilach numdber and the shock odliquity.

In the strcam following a shoek the cntrepy rcmains
cornstant along each streamline, as shown in appendix 1,
but now the ontropy is not constant througheat tho rcgion.
Thvs ir the course of the numerical sclu:i-dn carricd out
exnctly as indicated in the precoeding s..iions, it is
nceessory to look up values cn the compotavion curves at
the oentropy appropriatc to the strcamline nassing through
the peorticular peint in question. Thus cach time a conm-
putation curve mist be used, the curr-nt value of V¥ at
that point must bec obscrved and the voluo of the entroepy
appronriate fo it must be uscd. 4As the sclution pro—
grcsscs ond the values of VY at points change, corrcc—
tion for the attendant changoes of the cntrony nust be
madce pericdically.
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This does not eand the difficulties. If a shoek wave
{s curved, or crosses a region of nonunifera (but ir-
rotatisnal) velocity, the velocity after the shock will
rot in general be distributed properly for the flow to
tc irrotational. Thus the rotation term on the right »f
equation (10) cannct be ignored in the flow following a
shock wave. Quantitatively, the rotation folleowing a
shock 18 obtainod by equaticn (9) from the change of en-
tropy tetween streamlipes, which in turn is obdtained from
comvutation figure 15 and the shock.

¥ste that along & given streamline the rotation 1is
not constant but is proeportional to thec pressure (he i3
8t11l censtant everywhere by the assumcttions of adiabatic,
fricticnless flow and uniform conrditions at infinity),
Thus in a reglon of flow following a snock, equation {22}
tecomes, using equation (9).

(Uy'~ V3') {In p/pyy = inp/pys)
4

v g ) N (e _ {82

(va'=ve Y (on p/."oq’l“ '”/po 2) + 5 PR \\3/4 \R /2

: | CY e Ve - Ve

Wil ala'e Wy tal gy, -

=0

where d(;“§) has beon evalmated along a constant £ ling
PP

©
PO‘ 0

and 18 given on comzutation figures 23 and 24.

Thce final difficulty to be met 1s the fact that the
sheelr 1s nerely a "boundary condition®™ between a super-—
sonic region and a sutczznic reglion, Generally, given a
soluvlen vith a shock, 1t is possible to extend the super—
soric rejion beyond the position of the shock (at least a
short distance) were it not present and to extend the sub—
sniiic reglion likewise, Thus the shock is a wave which
moves vac: and forth until it has a magnitude which permits
it t» 2osume a steady, fixed location in the flow, ZIhe
nature o the superscnic flow field "extended" and the
subsoniec flow field "extended” determines the stability
of tae shoeck wave, Experimentally shock waves are fre—
quenily Tound to waver or vibrate.

Actual solutions containing shoeks are obtained in
the-following way:
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1. A problem is solved as previouely descrlbed, in-
cluding rzglons of supersonic velocity.

2. & shoek is arbistrarily placed in some location
in the surersonic region. The morec infermation, experi-
mental or etherwise, about the probable location and
shapo of the shock wave, the better.

3. With this shoek fixed the flow in the reglen
following the shock is determined by the shock boundary
conditiens of stream function and ontropy distridution.

4. On completing this solution by relaxation a check
at tho shock will generally show that the streamline
direcction *ellowing the shock dees not agrse with the
shock obliquity assumed. The obliquity is changed to get
acreenent of direction of the streamlines and step 3 is
repeated.

5. A few repatitions suffice to get a sufficiently
accurate golution,

A solution with a shoecx in the hyperdollic passage
obtained in this xmanner is shown in figure 10,

CONCLUSIONS

Jumerical methoeds fer ebtaining solutions of the
twow-dimensional, adiabatic flow of frictionless, perfeet
gases 1a described in detail and illustrated dy solu-
tiong of the flow of air through a hyperdollc passage
at widely varying velocitics.

The relaxation nethod applied to goneral passages
or airfoll shapes can readily supply all data desired
for the flow of inconpressible fluids. These solutions
can bo corrected for compressibllity offects up to the
appearance of supersonic rogions by use of the same method.

After supoersonic reglons apvear, othor moethods de-
scribed permit the further cerrectiorn of tro flow far
these offascts. Finally, solutiona with shocks, including
all of the attendant rotation anl entropy change effects,
are obtained by a step~by-step process.

A1l of the neothods described have ons enormous adw
vantage over analytical nethods of solutien of these

}

ki
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prodlens, They permit the coamputer to use all of
facts i¢c mmows adout the phenomena throughout the
patationg,

lany curves presenting the properties of air
quired Tor these computations are appended.,

Harvard TUniversity,
Canoridge, Hass., March 1, 1944.

APPEYDIX I
ROTATIONAL HCTION

For most fluid mechanics work, the equation of
aotion of the fluid can be replaced by the fact that the
veloclity distribution is irrotational., ZFor the super-
seaniec flow of conmpressible fluids in which shock waves
sccur, the velscity distribution will not be irrotatiocnel.

Consider a general case of the nmotlon of a ¢compres-
sitle, frictionless, perfect gas between the curved
strearlines af figure 11. The fluld element rotates
about an axls normal to the paper at rate given dy

ow=— L% %. (29)

on

The »rcssure gradi-
extv noraal to the
strec:lines must pro—
duce the centripetal
acceleration of the
fluil elenent; thus
9p _ pa?®

n r (30)

Elininate r between
{(29) anc (30)

dq 1 dp
25 i i
S 51 o5 (31)
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Introduce the stagnation enthalpy

2
. h = h + S——
° 2

and the thermodynamic relation

dh = Tdas + S (33)

P

L3

and equation (31) for the rotation of the fluid element
becomes :

(54)

N¥ow introduce the stream function d¥ = pqdn and the
gas law p = pRT

~\=.B_.§.a-_ .a._}.lg. .
2o = - G- P 5y tz5)

The condition fe¢r irrotational motion of a perfect

, gas 1s seen to be constant entropy and constant stagna-
tion enthalpy throughout the region, or else a delicate
valance between 8 and hg. The balanced case is im-

portant since it insures zero rotation for the adiadatic
flow of a gas from . .arge region of zero velocity even
though the temperature is not uniform there. The case of
greatost importance is the adiabatic flow from unifornm,
zero.velocity conditions at infinity. TFor this case hy
is constant everywh-re and s 1s constant up te the
first shock wave. Thus the flow is irrotational up to
the first shock wave and rdtational thereafter,

Tc find the distridution of rotation bshind the
shock wave, differentiate equation (32) along a strean- -
line, cbserving that for adiabatic flow hy 1s constant

everywhere.

. 3h 29 _
) -53+q5—§--0 (36)
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Also ty the Bernoulli equation

_1:_.22.-&(_!
p oL

According toc equation (33)

.i=.l_<_§_h.__1_ 30 ) (38)
oL T L p 9L /

Trhe entropy remains constant along streanlines between
shocks. Thus the rotation of the fluid is proportional

to tae pressure along streanlines in regions between
ehacks. The proportionality constant varles from stream-’
1ine So streamline according to the distribution of en~
trony between streamlines produced by the shock wave.

APPENDIX II
THS COMPUTATICY CURVES

iiegt of the curves found useful in computation follow
ron these well-known thermodynamic relations for a con-
tant specific heat, perfect gas.

T
(a)

(v) (39)

ds — .d._g.—cp——-— (C)
; P o

The conservation of energy for the adiabatic flow
of a frictionless fluid is

&g, @ “~aztant along a streamline (40)
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Introduce tho aceustic velocity from (391b)

Lo S S L ( 1 >=
. —_— 3 e o= = ] - ) 1
a 0 T (4] 8, . 2 & [} ( ¢ )

3y integration of equatien (39c)

2% X 1 8«84 1
P .o TR (2NYT .,T X { _7-1'«’_3_\2}’!-1
Po \1,/ 2 \ao/

Computatien figures 12, 13, and 14 follow immediately.

Zquation (41) can be rewritten aﬁ

] 1 .Y—L ( \
= - - 43
K2 (qfagi® 2
- Thie relation is indepordent ¢f the entrepy changes and

I 1e given as computation Tigure 19. This with cemputation
figures 12, 13, and 14 ylelds figures 17 and 18, again by (39c¢)

3 o Y

X - S—QQ / Y-1 - g8-8p

X LIRS &N 2o TR L L (AN T gy
Dy \To / L 3 \og/ J

This equaticn, together with (42), vermits the construc-
tion of computation figures 20, 21, 23, and 24.

A general relatinsn for the dynamic pressure is ob-
tained frem equations (42) ana (43).

R 8-8o _
a - R
pa_ . _YM o (45)
. po :- ’Y S\l’—l‘ .
: 11 + Szl oy Y-1
2 J

Since the dynamic pressure is used only te determine
pressure cecefficilents, the coemputation figure 22 ig plotted
for only s-84 = 0,
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The esavutation figure 156 and 16 fer compression shocks
follow fram Prandtl's equation for norzmal shocke

ab qa = qer (46)
where

qQy velacity before the shock

qa velaelity after the sheck

Qer critieal velocity = viéﬁ a4 %"E‘% Q®

tocother with equatisns (39).

Tho entropy increase through a normal shock was
eoaputed frem

S=~5p

2 /
21 0 TREL Y (. T -1\ (47)
/ \(Y + 1)H° Y +1/

1
s ok (-

R Y +1 Y+1

Tre fact that an otliquec shock ie a normal phosk to a
component ef the velecity completes the inforzation re-
quired fer eemputation figures 15 and 16.

APPENDIX III

The transforamation of the equation for tho strean
function frem the physical x,y plane to a naw ¢, T
plane gives a sinmple result for a confurmal transfornma=-
tien. 4 cenformal transformation results for £ and 0
such that

ﬂr = §x . Nx = - gr (2)

This 1s equation (2) of the report which defines tho
strean funetion and velocity potentlal of an irrotational
flow of an incompressidle fluid except that, for conven-

ience,

(48)
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First it i1s shown that

a;?
bxy®= 37 S4n ®

for any function o (X,Y).

4 straightforward derivation seems in this case to be
simplest:

(px = (Pg ix + CPn 'ﬂx (50)
Repeating the process and rearranging terms,
3 3 . v
Pxx = Orp by +Onn Nx +29gy Txbx+ Py ?xxf% xx  (51)

A similar expression for @yy when added to eguation (51)
gives

3 3
Pxx * Oyy = fpr (bx +Ey ) + Ppp (Nx7+ )

* 29 (ngby +Nyby) + Ppllxx + Eyy)+ Pq (nxx+0yy)  (52)

By equation (2) this reduces to

oy o= = 3 3 = <
AXY\-? —-‘Pxx +‘PYY = qq (CPZZ‘*- CP'(m) = qq AgT-.(P (53)

= bx® + by® o Ng®s Ny® (54)

Retnurning to the physical coordinates x = XD, y = YD,
equation (48) follows.
Now the conversion of the differential equation (10a)

for the stream function, V¥, from x,y to (T coordinates
-follows immodiately from the identity

a/1 aw\, /’ a_g:_) 1 (v, N 1}

Thus equation (10a)
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3/ W\,

o 2 gt =y

ax\p 9ox/ oy\e

becones
) ./l a}y\. d /1 3N\,

APPINDIX IV

DERIVATION OF EQUATION USED 10 COMFUTE
SUPBRSONIC VELOCITY REGIONS

To get an equation for the streanm function ¥ with

é% as rcofflciont instead of lInp, degin with equa-

-_.n (149).

3
Vg +Vqn - Ve (inplg - Vn (vnp)y + %‘}“'—2— =
. 1

By equation (15)

(56)

ongutations)

where the sgquare root is (for mumerical ¢
y near urity.

no trouble, as its value is generally ver

Kowrite oquation (14v)

v 2 _
w§§+wn(157;)n-wtﬁtnpk N i%ﬁp.= o (57)

and substitute from equation (56)
\ {TH
."‘:24'1;"7_ (In-g‘-— -'-1'— wn {1‘3 (1"’ E'z .}
2 1) A, 2 ¥y p 1

2,

E_P....:.-P-go
a4
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A sonetines more useful form of equation (22)
follows by noting that the last three terms are generally
very snall ond that the velocity q 1s related to the
¥ gradient Ly the computation curves, Differentiate
the first two terms of equation (22) and neglect the last
three terns.

. A
Wadgy *+ Wy (1n &+ (3a &) o ()

This “econes equation (27), if dimensionless variadles
are introduced., In the use of equation (58), the
gradient is taken as Vg the WE term being very small.
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wind-tunnel and free air tests of arbitrary airfoil ghapes at subsonic speeds,
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